
1126 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 44, NO. 3, MARCH 2025

Phoenix: A Dynamically Reconfigurable Hybrid
Memory System Combining Caching and Migration

Yifan Hua , Student Member, IEEE, Shengan Zheng , Weihan Kong , Cong Zhou,
and Linpeng Huang , Senior Member, IEEE

Abstract—With the growing memory requirements of modern
data-intensive applications for high performance and large
capacity, building hybrid memory systems with different memory
technologies has become a dominant trend to satisfy these
demands. For better system performance, frequently accessed hot
data is fetched into the fast and capacity-limited near memory
(NM) while cold data is evicted to the slow and large far memory
(FM). In prior works, NM is used as a cache of FM (cNM),
part of OS-visible memory (mNM), and a fixed capacity of cNM
and mNM. This article presents Phoenix, a novel hybrid memory
architecture that harnesses the advantages of both cNM and
mNM. The ratio of cNM to mNM is adjustable during runtime
to better exploit both temporal and spatial locality benefits for
different memory access patterns. All cNM and mNM space is
multiplexed to mitigate the data movement overhead for the mode
switch between cNM and mNM. In our evaluations, Phoenix
outperforms state-of-the-art designs by an average of 18.2% and
consumes orders of magnitude less metadata storage space.

Index Terms—Cache mode, data migration policy, hybrid
memory system, memory mode, spatial and temporal locality.

I. INTRODUCTION

MANY modern big-data applications have vast datasets
that dwarf capacity-limited SRAM caches, resulting in

excessive cache miss requests and severe bandwidth pressure
to off-chip DRAM modules [1]. Meanwhile, memory capacity
has become scarce for data-intensive applications [6], [58].
However, the widely used memory technology, DRAM, suffers
from device scalability problems [57]. Consequently, DRAM
is unable to meet the growing demand for either memory
bandwidth or capacity.

Manuscript received 12 January 2024; revised 14 May 2024; accepted
2 September 2024. Date of publication 5 September 2024; date of cur-
rent version 21 February 2025. This work was supported in part by
the National Key Research and Development Program of China under
Grant 2022YFB4500303; in part by the National Natural Science Foundation
of China (NSFC) under Grant 62227809 and Grant 62302290; in part
by the Fundamental Research Funds for the Central Universities; in part
by the Shanghai Municipal Science and Technology Major Project under
Grant 2021SHZDZX0102; and in part by the Natural Science Foundation
of Shanghai under Grant 22ZR1435400. This article was recommended
by Associate Editor M. Zapater. (Corresponding authors: Shengan Zheng;
Linpeng Huang.)

Yifan Hua, Weihan Kong, Cong Zhou, and Linpeng Huang are
with the School of Electronic Information and Electrical Engineering,
Shanghai Jiao Tong University, Shanghai 200240, China (e-mail:
huahuahuahua@sjtu.edu.cn; weihan@sjtu.edu.cn; cong258258@sjtu.edu.cn;
lphuang@sjtu.edu.cn).

Shengan Zheng is with the School of Electronic Information and Electrical
Engineering and the MoE Key Laboratory of Artificial Intelligence, AI
Institute, Shanghai Jiao Tong University, Shanghai 200240, China (e-mail:
shengan@sjtu.edu.cn).

Digital Object Identifier 10.1109/TCAD.2024.3455237

Various memory technologies have been developed to meet
the memory requirements in terms of capacity, bandwidth,
access latency, and cost for modern applications. The emer-
gence of persistent memory (PM) [43], [44], [45] and compute
express link (CXL) [46], [55], [56] technologies exhibit the
potential to fulfill the demand for memory capacity at a
lower cost. Besides, the advancement of die-stacked tech-
nologies have given rise to high-bandwidth memories, such
as hybrid memory cube (HMC) [36] and high-bandwidth
memory (HBM) [34]. Unfortunately, none of these technolo-
gies can independently meet the diverse memory demands
across various application domains. Consequently, the con-
struction of hybrid memory systems utilizing different memory
technologies has become the mainstream focus of recent
research [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12],
[13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23],
[24], [25], [26], [27].

In general, the hybrid memory system comprises different
types of memory technologies: one has a limited capacity with
better performance (higher bandwidth or lower latency), and
another has a larger capacity but relatively poorer performance.
For instance, hybrid memory systems [2], [3], [4], [5], [6], [7],
[8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19],
[20], [21], [22], [23], [24], [25], [26], [27] consist of on-chip
HBM and off-chip DRAM, local memory and remote memory
connected by CXL, or DRAM and PM. To avoid constraints
imposed by specific memory technologies in subsequent dis-
cussions, we call the former near memory (NM) and the latter
far memory (FM) as in previous works [5], [6], [23]. Recent
works have employed NM as a cache of FM (cNM) [10], [11],
[12], [20], part of OS-visible memory (mNM) [3], [7], [8],
[9], and both cNM and mNM (hybrid mode) [23], [28]. cNM
designs react fast to hotness changes by fetching all requested
data from FM to NM, but take the NM capacity away from the
memory system and have a bad performance for workloads
with weak temporal locality. mNM designs enhance the OS-
visible memory capacity and bandwidth efficiency, but make
the migration decision slower since only data with potential for
future reuse is migrated. Hybrid mode designs aim to combine
the advantages of cNM and mNM designs.

Unfortunately, existing hybrid mode designs [23], [28] suf-
fer from four limitations.

1) Incapability of supporting an adjustable ratio of cNM to
mNM during runtime. Fixed cNM and mNM capacities
lack the flexibility to match different memory access
patterns.

1937-4151 c© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 18,2025 at 07:18:08 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-2321-367X
https://orcid.org/0000-0003-2485-760X
https://orcid.org/0009-0007-6922-1740
https://orcid.org/0000-0002-1531-7962

HUA et al.: PHOENIX: A DYNAMICALLY RECONFIGURABLE HYBRID MEMORY SYSTEM 1127

2) Unnecessary data migration overhead for mode switch
between cNM and mNM stemming from the separate
cNM and mNM space. For example, for evicting a page
from cNM to mNM, a victim page in mNM is swapped
out to FM, and then cached for the subsequent access,
which brings unnecessary migration cost.

3) Inability to efficiently swap data between hybrid mem-
ories with lightweight data remapping overhead. Data
swap between mNM and FM either sacrifices the swap
efficiency for less remapping metadata or requires a
large amount of metadata to track the data migration
trajectories for high swap efficiency.

4) Large metadata storage overhead for hybrid memory
management. Their space-inefficient metadata struc-
tures, such as pointers to index pages in mNM and
tags to manage cache lines in cNM, consume significant
storage space. Besides, they employ small metadata
management granularity to reduce over-fetching. Not
only is the potential spatial locality not fully exploited
but also the metadata consumes large NM space.

In this article, we propose a novel hybrid memory archi-
tecture named Phoenix to preserve the advantages of both
cNM and mNM designs while overcoming the above four
limitations, by adding a hardware-based hybrid memory man-
agement controller (HMMC). All NM can be utilized as
cNM or OS-visible mNM. NM can be dynamically switched
between cNM and mNM over time to better exploit both
temporal and spatial locality benefits for different memory
access patterns. cNM can be compelled to become mNM for
high memory footprint condition to maximize the total system
memory capacity and reduce page faults. The mode switch
between cNM and mNM only requires updating metadata in
HMMC. Caching (in block granularity) and migration (in page
granularity) decisions are made based on workloads’ temporal
and spatial locality features, as well as the system memory
footprint. Phoenix employs a unified set-associative mecha-
nism for page location entry remapping table (PRT) to track
page migration and record blocks’ caching information in an
NM page for evaluating the spatial locality. The page occupied
information is kept in a page occupied bit vector. A hotness
tracker is designed to track data hotness changes and provide
the temporal locality information. To minimize the migration
cost between cNM and mNM, all cNM and mNM space is not
separate but multiplexed to enable the mode switch process to
move only necessary data. For data swap between heteroge-
neous memories, a fast&slow swap mechanism is proposed to
mitigate the data remapping overhead while maintaining high
swap efficiency. To limit the metadata storage space, Phoenix
employs space-efficient metadata structures and suitable cNM
and mNM management granularities. Metadata for hybrid
memory management is placed in NM and cached in HMMC.
A lightweight metadata prefetcher is adopted to improve the
hit rate of the metadata buffer. Concisely, this article makes
the following contributions.

1) We present Phoenix, a novel hybrid memory architecture
in which NM can serve as both cNM and mNM. The
ratio of cNM to mNM is adjustable during runtime
to better exploit both temporal and spatial locality

benefits for different memory access patterns, without
rebooting.

2) All cNM and mNM space in Phoenix is not separate
but multiplexed, which minimizes the data movement
overhead for mode switch between cNM and mNM. The
mode switch only requires updating metadata in HMMC.

3) For data swap between hybrid memories, we propose a
fast&slow swap mechanism to mitigate the data remap-
ping overhead while maintaining high swap efficiency.

4) Phoenix greatly reduces the storage space for metadata
by 1–2 orders of magnitude through employing space-
efficient metadata structures and appropriate migration
and caching granularities with a low over-fetching risk.

5) In our evaluations, Phoenix outperforms state-of-the-art
designs by 18.2%, and incurs 12.7% less NM traffic and
9.3% less FM traffic on average.

II. BACKGROUND AND MOTIVATION

In order to provide fast and large capacity memory for
applications, many works combine NM with FM in hybrid
memory systems [2], [3], [4], [7], [8], [9], [10], [11], [12],
[20], [21], [22], [23], [28], [29]. In this section, we give the
background of the hybrid memory system, three types of NM
utilization in prior hybrid memory management designs, fast
swap and slow swap approaches for data migration, and our
motivations.

A. Hybrid Memory System

Various memory technologies exhibit different tradeoffs in
terms of capacity, bandwidth, access latency, and cost. A
promising direction toward a more efficient memory system
design is to combine two memory technologies with com-
plementary characteristics in a hybrid memory system: 1)
NM has a limited capacity with better performance (higher
bandwidth or lower latency) and 2) FM has a larger capacity
but relatively poorer performance. In DRAM and PM hybrid
memory systems [15], [47], [48], [49], PM provides a larger
memory capacity but has higher read and write latency
than traditional DRAM. Emerging CXL technologies [16],
[26], [46], [55], [56] can attach remote byte-addressable
memory into the physical address space of the host machine,
which appears to the program as a CPU-less NUMA node.
Remote memory provides a larger memory capacity than
local memory. However, accessing remote memory requires
additional CXL round-trip latency. In on-chip HBM and off-
chip DRAM hybrid memory systems [2], [21], [23], [25],
HBM offers substantially higher memory bandwidth while
DRAM provides a larger memory capacity.

B. Three Types of NM Utilization

State-of-the-art designs leverage the NM in cache mode
(cNM), memory mode (mNM), and hybrid mode (both cNM
and mNM) in hybrid memory systems.

NM Used as cNM: A large body of works have uti-
lized NM as cNM. They can be divided into two classes:
1) block-based [10], [11], [12], [13], [14], [17], [18] and 2)
page-based [20], [21], [22]. To enhance the caching capacity

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 18,2025 at 07:18:08 UTC from IEEE Xplore. Restrictions apply.

1128 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 44, NO. 3, MARCH 2025

(a) (b)

Fig. 1. (a) Fast swap and (b) slow swap.

and better exploit the temporal locality, common block-
based cNM manages data at 64-B cache line granularity.
Unfortunately, tags may occupy 12.5% of the NM capac-
ity [11]. Besides, block-based cNM has a poor hit rate for
workloads with weak temporal and strong spatial locality [12].
Page-based cNM reduces the tag overhead by caching 1–8 kB
pages. However, many pages contain data that is not accessed
prior to the pages’ eviction from the cNM, wasting memory
bandwidth [20]. In general, small cache lines better exploit the
cache but have higher tag overhead. Large cache lines reduce
the tag overhead but may cause over-fetching.

NM Used as mNM: Contrary to cNM designs, mNM designs
make all NM capacity visible to OS and have the potential
to utilize the bandwidth of all memories for serving memory
requests. As a result, they can potentially reap the benefits of
both higher aggregate memory bandwidth and larger memory
capacity. However, the high remapping overhead [2], [3],
[4], [5], [6], [26] and over-fetching issue caused by coarse
migration granularity [7], [8], [9], [27] still plague modern
mNM designs.

NM in Hybrid Mode: Some research aims to combine the
advantages of both cNM and mNM, and they show that
hybrid mode can gain more performance benefits than single
mode. State-of-the-art hybrid mode designs adopt statically
reconfigurable mechanisms to manage the two modes. In
particular, KNL [28] supports 25% or 50% NM as cNM.
Hybrid2 [23] and Baryon [24] fix a small cNM capacity of
64 MB. These OS-invisible cNM reduce the total memory
capacity presented to the OS. All of these designs require
a system reboot to switch from one hybrid configuration to
another. The caching granularity in cNM is smaller than the
migration granularity in mNM, and the caching scheme is
more aggressive than the migration scheme, enabling cNM to
cache data with changeable hotness in finer granularity and
mNM to store data with stable hotness in coarser granular-
ity. Metadata for managing the cNM and mNM cannot be
accommodated in SRAM. Hundreds of kilobytes of SRAM are
used as a metadata cache to store information about those hot
pages.

C. Fast Swap and Slow Swap

Memory mode and hybrid mode designs take two
approaches for swapping data between FM and mNM: 1) fast

swap [2], [3], [23], [54] and 2) slow swap [4], [5], [6], [7],
[8], [24].

Fast swap tracks the migration trajectories of all memory
pages to permit them to be remapped to any memory space.
Fig. 1(a) gives an example to illustrate the fast swap process.
In the initial state, the six pages reside in their original
locations, with physical addresses matching those in the OS
page tables and TLBs. With the workload running, page C in
FM becomes hot and is swapped with page A in step 1. After
that, page D becomes hot and is swapped with page B in step
2. Later, page E becomes hotter than page C, where page E
should be migrated from FM to NM and page C should be
evicted from NM to FM. Since all memory pages are permitted
to be remapped to any memory space, page C does not need
to return to its original position in FM and is directly swapped
with page E in step 3. Each swap requires two page reads and
two page writes.

Slow swap only keeps track of the pages remapped to
NM and requires remapped pages to return to their original
position. The positions of all pages in FM can be inferred from
their physical address in page tables, with the exception of
pages currently remapped to NM. Fig. 1(b) gives an example
to illustrate the slow swap process. Compared to fast swap,
the first two steps in slow swap are the same while step 3
requires additional page reads and writes and consumes more
data movement bandwidth. In step 3, since the remapped page
C should be evicted to its original position in FM, page C and
page E cannot be directly swapped. The three pages, C, A,
and E are read to three page buffers in step 3.1 and written
to their target positions in step 3.2, requiring three page reads
and writes. The slow swap generally consumes more memory
bandwidth than the fast swap to replace a page in NM with
another page in FM, but requires less metadata to track the
migration trajectories of remapped pages.

D. Motivation

As described before, hybrid mode design provides an
opportunity to combine the advantages of both cNM and
mNM designs. However, state-of-the-art hybrid mode designs
experience four limitations as follows.

First, they fix the cNM and mNM capacity, which cannot
always meet the memory requirements for different memory
access patterns. Fig. 2 shows the memory access patterns of

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 18,2025 at 07:18:08 UTC from IEEE Xplore. Restrictions apply.

HUA et al.: PHOENIX: A DYNAMICALLY RECONFIGURABLE HYBRID MEMORY SYSTEM 1129

Fig. 2. Percentage of cache lines with different access numbers before
eviction in 1-GB cNM. N represents the average access number for each 64-B
data in different sizes of cache lines.

three representative SPEC2017 [40] workloads’ slices selected
by Simpoint [59] as an example: we collect the average
access number for each 64-B data in different sizes of cache
lines before eviction in 1-GB cNM. For the slice of mcf
(strong spatial and strong temporal locality), both the large
and small cache lines achieve a high access number. To reduce
the high tag overhead and better leverage the spatial locality
and memory bandwidth, most NM is preferable to be used
as mNM with large management granularity without causing
over-fetching. For the slice of wrf (weak spatial and strong
temporal locality), with the cache line size increasing, the
number of hot cache lines decreases, which means large cache
lines may bring over-fetching. Thus, a small part of NM is
better to serve as mNM to store those large hot data while
the other NM is recommended to be utilized as cNM with
small management granularity. For the slice of xz (strong
spatial and weak temporal locality), most data is rarely reused.
A large amount of data movement may generate significant
bandwidth cost and frequent hot data evictions. Thus, most
NM is favored as mNM with large management granularity
for better bandwidth efficiency and spatial locality, with a
nonaggressive migration scheme. To sum up, for different
categories of workloads, a fixed cNM capacity cannot fully
exploit the temporal and spatial locality and utilize all the
memory bandwidth. Worse still, they may cause over-fetching
and bring unnecessary data movement cost. Furthermore, these
fixed OS-invisible cNM reduce the total memory capacity
presented to OS and contribute to more page faults under high
memory footprint conditions. The ratio of cNM to mNM should
be dynamically adjustable over time.

Second, the statically reconfigurable designs consume more
memory bandwidth for data movement between cNM and
mNM due to the separate cNM and mNM space. For example,
for evicting a page from cNM to mNM, another mNM page
as a victim is swapped out to FM, and then cached for the
subsequent access. The data migration from one NM page
space to another NM page space brings extra unnecessary
migration costs. Thus, the space of cNM and mNM needs to be
multiplexed in order to minimize the data movement overhead
for switching the two modes.

Third, prior designs employ either fast swap or slow swap
mechanisms for data swap between mNM and FM. Fast swap
designs incur high metadata storage overhead for data remap-
ping while slow swap designs result in low swap performance.
Considering the locality in memory access patterns exhibited
by the operating system, wherein the OS tends to access
memory within a specific address range over a period, only

TABLE I
ABBREVIATIONS IN THIS ARTICLE

TABLE II
VARIABLES IN THIS ARTICLE

a small portion of memory pages are potentially subject
to remapping during a period of workload’s running time.
Tracking the migration trajectories of a subset of memory
pages offers an opportunity to reduce the data remapping
overhead while maintaining high swap efficiency. Thus, the
mechanism for data swap between hybrid memories should be
redesigned.

Fourth, the metadata storage overhead in modern hybrid
mode designs cannot be ignored. They employ small caching
and migration granularities to lower the over-fetching risk.
Not only is the potential spatial locality not fully exploited
but also the metadata consumes tens of megabytes of NM
memory space in a hybrid memory system with a capacity of
several gigabytes. These metadata cannot be accommodated
in on-chip SRAM and takes a large NM capacity away from
the memory system. Worse still, emerging PM [47], [48], [49]
and CXL [46], [55], [56] technologies can provide TB-level
memory in a hybrid memory system, and the metadata storage
space can reach tens of gigabytes. Space-inefficient metadata
structures, such as pointers to index pages and tags to manage
cNM cache lines in state-of-the-art designs, contribute to the
large metadata storage space as well. As a result, the metadata
size should be minimized as small as possible.

III. PHOENIX ARCHITECTURE

Phoenix is a hybrid memory architecture in which NM can
be used as either cNM or mNM. Data can be fetched from
FM to cNM in block size and migrated in page size between
FM and mNM. The ratio of cNM to mNM is dynamically
adjustable during runtime to match different memory access
patterns, without rebooting. Abbreviations and variables in this
article are summarized in Tables I and II, respectively.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 18,2025 at 07:18:08 UTC from IEEE Xplore. Restrictions apply.

1130 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 44, NO. 3, MARCH 2025

Fig. 3. System overview.

A. Phoenix System Overview

Fig. 3 presents the overall architecture of our system. A
HMMC is added between the shared LLC and the memory
layer to facilitate the data caching and migration functional-
ities. Phoenix does not modify the page tables, TLBs, and
memory controllers. Thus, there are no modifications to the
address translation between virtual and physical addresses,
nor to the mapping between physical addresses and actual
memory locations. Phoenix remaps the physical addresses
from the OS to new physical addresses by using the HMMC,
and then maps the new physical addresses to actual memory
locations. Metadata of Phoenix is stored in NM and consists of
three components: 1) the page location entry (PLE) remapping
table (PRT); 2) the hotness tracker; and 3) the page occupied
bit vector. The metadata is only a few megabytes in size
(detailed in Section IV-B), which is negligible compared to
the NM size. An on-chip SRAM buffer of a few kilobytes
is employed in HMMC to cache frequently utilized metadata
(detailed in Section III-H). For each LLC miss memory
request, the PRT is responsible for querying the actual location
of requested data, either in FM or NM. The PRT records
the information of remapped pages and cached blocks, and
provides the spatial locality information. The hotness tracker
keeps track of the most recently requested hot pages to provide
the temporal locality information and monitors the memory
footprint, determining the migration and caching logic in
Phoenix. The occupied information for all memory pages is
recorded in the page occupied bit vector. To lower the miss
rate of the metadata buffer in HMMC, a metadata prefetcher
prefetches metadata from NM to HMMC asynchronous to
memory access requests. Similar to previous works [2], [3],
[4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [19], [20],
[21], [22], [23], [24], [25], data movement between NM and
FM is executed through a data movement module. The data
movement module records the pages being migrated. For data
movement from one memory location A to another location B,
Phoenix first reads data from A to the data movement module
and then writes to B. For a regular request requesting for
a page being migrated, the request retrieves the needed data
from the data movement module and returns it to applications.
The request does not need to access memory. By using the
HMMC, NM is logically, not physically, partitioned into cNM
and mNM.

For high memory footprint condition, in order to provide
more OS-visible memory and reduce page faults, part of cNM

(a)

(b)

Fig. 4. Example of the unified set-associative mechanism for caching and
migration. The data movement indicated by arrows in (b) corresponds to the
values of PRT in (a).

may be compelled to become mNM. The remaining NM can
still serve as cNM. For low memory footprint condition, since
the data migration granularity of mNM (page size) is larger
than the fetching granularity of cNM (block size), data with
strong spatial locality is preferred to be placed into mNM. This
approach can ensure the hit rate of NM, better utilize all the
memory bandwidth, and lower the metadata query overhead
for blocks. cNM is better suited to pages with weak spatial
locality. Only hot blocks are cached in cNM to reduce over-
fetching. In this way, the entire NM except for the space of
metadata, is not only visible as a flat address space for OS but
also can flexibly serve as cNM or mNM most of the time to
match different workloads’ memory access patterns.

B. Memory Space Layout and Metadata

Since cNM can be flexibly switched to mNM, all the FM
and NM except for the space of metadata, are visible as a flat
address space for OS, as shown in Fig. 3. The mode switch
does not affect the physical memory visible to the OS. The
space of cNM and mNM in Phoenix is multiplexed. The mode
switch (detailed in Section III-F) between cNM and mNM only
modifies the metadata buffer in HMMC and requires moving
necessary data blocks.

For metadata management, direct remapping has a bad
performance [6], [23], [30], [31] due to poor flexibility,
uneven NM utilization, and frequent page swaps. Besides, the
hardware query overhead for a fully associative remapping
table is unacceptable on chip [23], [32], [33]. Therefore, for
a balance between the hardware overhead and performance,
Phoenix adopts a unified set-associative mechanism to manage
metadata both for caching and migration, as Fig. 4 illustrates.
An FM page is only allowed to be cached or migrated to
another NM page location in the same remapping set.

PRT: As shown in Fig. 4(a), in each remapping set, the
set-associative PRT holds the original PLEs for tracked FM
pages, the remapped PLEs for all NM pages and tracked FM
pages, and block location entry (BLEs) for all NM pages. To
limit the metadata size in PRT, in each remapping set, Phoenix
tracks the migration and caching trajectories of a few memory
pages: all NM pages along with some hot FM pages [e.g., m
NM and p FM pages in Fig. 4(a)]. Only these NM and FM

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 18,2025 at 07:18:08 UTC from IEEE Xplore. Restrictions apply.

HUA et al.: PHOENIX: A DYNAMICALLY RECONFIGURABLE HYBRID MEMORY SYSTEM 1131

Fig. 5. Hot table in a remapping set.

pages tracked by PRT are permitted to be remapped to another
memory space. Note that if the tracked FM pages become
cold during runtime, they are replaceable by other hot FM
pages. The original PLE refers to the original page index [i.e.,
offset from the first page in this set, as shown in Fig. 4(b)]
in the remapping set, decided by the OS memory allocator
and the virtual to physical address mapping mechanism in OS.
Since all NM pages are tracked by PRT all the time while the
tracked FM pages are changeable during runtime, PRT only
records the original PLEs for tracked FM pages. The remapped
PLE combines the functions of page address remapping and
page allocation (−1: the page has not been allocated). For
example, the blue arrow in Fig. 4(b) indicates a swap between
the ith and kth pages in the remapping set, recorded by the
corresponding ith and jth PRT entries. The green arrow and red
arrow represent page caching and migration, respectively. One
PLE requires less storage space (�log2 (m + n)� bits, where
m and n are the numbers of NM pages and FM pages in a
remapping set, respectively) than a traditional tag or pointer
(a few bytes).

Since each NM page can serve as either cNM or mNM,
Phoenix utilizes a BLE to indicate the mode of an NM page
as well as the valid and dirty information of blocks in the NM
page. One BLE contains a mode bit, a valid bit vector, and
a dirty bit vector, as Fig. 4(a) shows. The mode bit denotes
whether the NM page is in cache mode or memory mode. For
a cNM page, the corresponding BLE indicates if the cached
blocks are valid and dirty. For an mNM page, the valid bit
vector records all accessed blocks in the page for evaluating
the spatial locality.

Page Occupied Bit Vector: The page occupied bit vector
records the occupied information for all memory pages in each
remapping set. An occupied bit indicates if the memory page
space has been occupied, queried by the page allocation and
data movement process.

Hotness Tracker: In each remapping set, the hotness tracker
includes a hot table and five parameters: the NM occupied
ratio (Rh), a hotness threshold (T) to decide if an FM page
should be brought in NM for high Rh condition, the number
of cNM pages (Nc), and the number of mNM pages in which
most blocks have/have not been accessed (Na/Nn). To reduce
the metadata storage overhead and get the temporal locality
information, the hot table only monitors the hottest pages,
including all NM pages and the recently accessed FM pages.
The hot table includes two queues with LRU replacement
strategy, one for NM pages and the other for FM pages, as
shown in Fig. 5. Each entry in the queue serves as a counter
to record the access number for a page before popped out
from the queue. When a memory request accesses a page, the
counter for the page is incremented by one. Recently requested
page entries are pushed back into the queue, and page entries
that have not been accessed for a long time are popped out of

Fig. 6. Memory access flow. Operations within the black closed boxes are on
the critical path. Operations within the red boxes are asynchronous to memory
accesses for LLC miss requests.

the queue. Therefore, the hot table can always identify recently
requested hottest pages during runtime. The popped-out NM
page entries are pushed back into the FM queue and incur page
evictions from NM to FM. The five parameters are used for
making data movement decisions and detailed in Section III-F.

C. Memory Access Flow

Fig. 6 illustrates the memory access flow. Using the
requested memory address, the LLC miss request first checks
if the required metadata has been cached in the metadata buffer
in HMMC. For a metadata buffer hit (1), Phoenix looks up
the PRT buffer to determine the actual memory address for
the requested data. For a metadata buffer miss (2), Phoenix
fetches the required metadata from NM to the metadata buffer
and asynchronously prefetches metadata that might be utilized
later. After looking up the PRT, a PRT miss (3) indicates
that the requested page is not remapped to other memory
space, and the LLC miss request directly accesses the original
requested memory address. In the case of a PRT hit (4), the
target page may be remapped to FM (5) or NM (6). For 5,
the memory request goes to FM. For 6, HMMC checks the
BLE if the NM page is in memory mode (7) or cache mode
(8). If the page is in memory mode, the memory request
directly goes to mNM. If the page is in cache mode, HMMC
further checks the valid bit vector to determine whether the
target block is cached. For block cached (9), the requested
data is in cNM. For block not cached (10), the memory request
goes to FM. All memory accesses update the corresponding
metadata and may incur data movement asynchronously.

D. Page Allocation Process

Few previous studies discuss the page allocation process.
However, simply allocating pages to FM or NM for all
workloads by the OS memory allocator does not fully exploit
the benefits of combining hybrid memory technologies. A
suitable page allocation mechanism can reduce the migration
cost for hot pages migrated from FM to NM and cold
pages evicted from NM to FM. Since the PRT records the

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 18,2025 at 07:18:08 UTC from IEEE Xplore. Restrictions apply.

1132 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 44, NO. 3, MARCH 2025

Fig. 7. Metadata prefetching mechanism.

remapping information of all NM pages and the page occupied
information of all memory pages, the pages whose original
PLEs are within the NM address range could be allocated
to any free memory space in a remapping set. Based on
the observation that adjacent allocation requests intend to
have similar memory access patterns [24], [39], [40], [41],
a hotness-based remapping allocation mechanism is applied
to Phoenix. If the recently allocated pages still reside in the
hot table queue for NM pages, the page is allocated in NM.
Otherwise, Phoenix allocates the page in FM.

E. Metadata Prefetching

Since metadata for managing the hybrid memory system
is placed in NM and cached in an on-chip SRAM, Phoenix
incorporates a lightweight metadata prefetcher to improve
the hit rate of the metadata cache and lower the metadata
access latency on the critical path, as shown in Fig. 7. A
recent work [42] reports that the address difference between
two consecutive memory accesses is effective for meta-
data prefetching. For each memory access through HMMC,
Phoenix employs a 64-bit address register to record the
requested memory address. The address difference is calcu-
lated by

Daddr = |Addrlast − Addrcurr| (1)

where Daddr is the address difference between two consecutive
memory accesses, Addrlast is the last requested memory
address recorded in the register, and Addrcurr is the cur-
rently requested memory address. An address difference queue
(ADQ) keeps the recently generated address differences along
with their respective counts. Each address difference entry
(ADE) in the ADQ includes an address difference (8 bytes)
and a counter (1 byte). Every time an address difference is
calculated, the counter of the corresponding ADE is incre-
mented by one. If the address difference is not in the ADQ,
it is pushed into the ADQ and its counter value is set to
one. ADQ entries unused for a long time are evicted from
the ADQ to catch the changes in memory access patterns.
For a metadata miss in HMMC whose page address is Addr,
Phoenix prefetches the metadata in ranges of Addr ± Raddr
(Raddr is the prefetching range), Addr + Daddr ± Raddr, and
Addr − Daddr ± Raddr, asynchronous to memory access logic.

F. Data Movement Decision

In this section, Phoenix makes the data movement decision
based on the temporal and spatial locality features of different
memory access patterns and the system memory footprint

to support flexible cNM and mNM capacities, lower the
over-fetching risk, maximize the OS-visible memory capacity,
and remove the eviction latency of cNM pages from the
critical path in the case of memory shortage. Memory accesses
bring changes to the hotness tracker and as a result, incur
data movement. Besides, for high memory footprint, data
movement is triggered to meet OS memory requirements.

For spatial locality, the BLE tracks the accessed blocks in
both cNM and mNM pages. If more than (1/2) of all blocks in
a page have been fetched into cNM, that means the page has
a strong spatial locality and should be switched to an mNM
page. More requested pages should be migrated to mNM if
most NM pages have strong spatial locality. mNM pages are
switched from cNM pages (most blocks in the page have been
accessed) or migrated from FM (not sure if most blocks in
the page have been accessed). Thus, mNM pages with a high
access ratio reflect a strong spatial locality degree (SL), while
those with a low access ratio and the remaining cNM pages
reflect a weak SL. The SL in a remapping set is evaluated by

SL = Na − Nn − Nc. (2)

For SL > 0 (strong spatial locality), more hot data should be
brought in mNM to better exploit the spatial locality and utilize
the memory bandwidth. For SL ≤ 0 (weak spatial locality),
hot data should be cached in cNM to reduce over-fetching.

For temporal locality, Phoenix uses the hot table to track hot
and recently accessed pages. It is hard to benefit from bringing
data with low access frequency into NM, which wastes
memory bandwidth and may cause frequent hot page evictions
for high NM footprint condition, resulting in performance
degradation. The threshold T in the hotness tracker can
alleviate this issue. If Rh is high, for SL > 0, only pages whose
hotness value is larger than T are permitted to be migrated to
mNM, and for SL ≤ 0, only blocks in a page whose hotness
value is larger than T are permitted to be cached in cNM.
In this way, for weak temporal locality workloads, a large
amount of data with low access frequency is not brought into
NM, which reduces the data movement overhead and eviction
frequency of hot pages and better utilizes the FM bandwidth.
For strong temporal locality workloads, despite some hot data
that may benefit from caching and migration not brought in
NM, the eviction frequency of those hottest pages is reduced
to make them serve more memory requests before eviction.
The FM bandwidth is better utilized, and the data movement
overhead is mitigated.

Based on the above analysis to better exploit both temporal
and spatial locality benefits for different memory access
patterns, the data caching and migration from FM to NM are
shown as follows.

Data Caching and Migration From FM to NM: Data
caching and migration are triggered by the conditions shown
in Fig. 8(a) and detailed as follows.

1) For accessing an FM page, ❶ if SL > 0 with a low
Rh, the page is migrated to mNM due to the strong
spatial locality. ❷ If SL > 0 with a high Rh, the page
is migrated to mNM only if its hotness value is larger
than T . ❸ If SL ≤ 0 with a low Rh, the page is cached
to cNM and only the requested block is fetched. ❹ If

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 18,2025 at 07:18:08 UTC from IEEE Xplore. Restrictions apply.

HUA et al.: PHOENIX: A DYNAMICALLY RECONFIGURABLE HYBRID MEMORY SYSTEM 1133

(a) (b)

Fig. 8. Data caching, migration, and eviction. (a) Data caching and migration.
(b) Data eviction.

SL ≤ 0 with a high Rh, the page is cached to cNM only
if its hotness value is larger than T .

2) For accessing a cNM cached page, if the target block is
not cached in cNM, Phoenix caches the block. If most
blocks in the page have been cached, the cNM page
turns into an mNM page. Since the cNM and mNM
space is multiplexed in Phoenix, only blocks not cached
are fetched from FM, minimizing the data movement
overhead for the mode switch.

Data eviction from NM to FM, aimed at providing more
free NM space, evicting zombie pages in NM, and removing
the eviction latency of cNM pages from the critical path in
the case of memory shortage, is detailed below.

Data Eviction From NM to FM: Data eviction from NM
to FM is triggered by the conditions shown in Fig. 8(b) and
detailed as follows.

1) If a cNM page entry is popped out from the hot table
queue for NM pages, dirty blocks in the corresponding
cNM page are evicted to FM.

2) Since evicting an mNM page to FM consumes much
higher bandwidth (at least 2×) than a cNM page, ❶ if
there is a free FM page in the remapping set, mNM
pages to be evicted have one more chance to reside
in NM. The mNM page to be evicted from the hot
table queue is switched to cNM mode without data
migrated to FM. A free FM page is marked as occupied
and all blocks in the mNM page are marked as dirty.
The mode switch from mNM to cNM is designed as
a buffering mechanism for increasing colder pages in
mNM, aiming to lower the migration cost resulting from
hotness fluctuations and extend the residency in NM to
serve more memory requests. There is no data movement
cost for mNM switched to cNM due to our multiplexed
space design. In this way, if these pages then become
hotter, no data movement is required. ❷ If there is no
free FM page in the remapping set, mNM pages to be
popped from the hot table queue are swapped with FM
pages to be migrated to NM.

3) For high Rh, in case of both the head page in the hot
table queue for NM pages and its counter value remain
unchanged over a long time, the page (zombie page)
should be evicted to FM since there is no other page
able to evict the zombie page from NM. ❶ If the zombie
page is a cNM page, dirty blocks in the cNM page are
flushed to FM. ❷ If the zombie page is an mNM page,
the mNM page is evicted from NM to FM.

4) If the system memory footprint is high in general (i.e.,
the memory address in LLC miss request is larger than
the FM capacity), cNM pages in multiple remapping sets
are flushed to FM. This batching mechanism provides
more OS-visible memory to reduce page faults. For

Fig. 9. Fast&slow swap.

pages to be allocated in these remapping sets later, there
is no need to wait for the eviction from cNM to make
free page space, which removes the eviction latency
from the critical path. In these remapping sets, all NM is
not permitted to be used as cNM until the OS memory
footprint drops.

To sum up, the migration and caching mechanism in
Phoenix addresses the limitations of state-of-the-art hybrid
mode designs for different kinds of workloads in Fig. 2.
For workloads with strong spatial and strong temporal local-
ity, most NM is used as mNM for better spatial locality
and memory bandwidth efficiency without over-fetching. For
workloads with strong spatial and weak temporal locality,
most NM is used as mNM with a nonaggressive migration
scheme to better utilize all the memory bandwidth and exploit
spatial locality benefits. Data with a low access frequency
does not bring significant memory bandwidth waste and
frequent evictions. For workloads with weak spatial and
strong temporal locality, most NM is used as cNM to better
exploit the temporal locality benefit and reduce over-fetching.
Compared to the fixed cNM capacity in existing hybrid mode
designs, more cNM capacity contributes to a lower eviction
frequency for data in cNM. For workloads with weak spatial
and weak temporal locality, few data are moved. Several
optimizations, such as advanced footprint caching [14], [19]
and software-assisted metadata management [2], [13], are
directly applicable to Phoenix. However, such options are
orthogonal to our contributions and require modifications to
existing operating systems and software. We do not include
them in our base design to clearly attribute the performance
gains to our proposed techniques.

G. Fast&Slow Swap

For data swap between FM and mNM in Section III-F,
Phoenix adopts a fast&slow swap mechanism to combine the
advantages of fast swap (high swap efficiency) and slow swap
(low metadata overhead for data remapping). Considering the
locality in memory access patterns exhibited by the operating
system, wherein the OS tends to access memory within

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 18,2025 at 07:18:08 UTC from IEEE Xplore. Restrictions apply.

1134 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 44, NO. 3, MARCH 2025

a specific address range over a period [50], [51], [52], the
majority of memory pages remain inactive. Consequently, only
a small portion of memory pages are potentially subject to
remapping during a period of workload execution. In each
remapping set, the PRT tracks the migration trajectories of all
NM pages and a few FM pages, rather than tracking all FM
pages or none of the FM pages. For data swap between two
pages whose migration trajectories have been both recorded in
PRT, Phoenix performs fast swap and updates the remapped
PLEs in PRT. Otherwise, Phoenix performs slow swap and
page entry replacement in PRT. Fig. 9 gives an example of
the fast&slow swap mechanism, where each remapping set
includes two NM pages and six FM pages. The PRT tracks the
migration trajectories of two NM pages and three FM pages.
Phoenix performs fast swap until there is no free remapped
page entry in PRT in steps 1–3. In step 4, page F whose
migration trajectory has not been recorded in PRT, is swapped
with page C. Phoenix performs slow swap to ensure that the
evicted page C returns to its original position in FM. In step
5, the migration trajectories of both page A and page E have
been recorded in PRT. The two pages are directly swapped
through the fast swap approach. In Section IV-B, we evaluate
the performance of Phoenix with different numbers of tracked
remapped FM pages.

H. Hardware Cost

Phoenix is a hardware-based design with core components
and processing logic integrated into the on-chip HMMC.
Compared to software-managed schemes, hardware design
provides faster address translation. The processing logic of
Phoenix can also be implemented in hardware without soft-
ware or OS interference. The hardware cost of Phoenix comes
from the on-chip capacity requirement and peripheral logic
circuits. The processing logic of HMMC mainly includes the
address resolution by querying the metadata buffer, the mode
switch between cNM and mNM by updating the metadata
buffer, and a few simple logic for data movement and metadata
prefetching, which is negligible compared to the on-chip
capacity overhead. The on-chip capacity of HMMC (evaluated
in Section IV-B) consists of 1) 1320-B PRT buffer (PLE: 640
entries, each entry is 10 bits in size; mode bit: 64 entries,
each entry is 1 bit in size; valid bit vector: 64 entries, each
entry is 4B in size; dirty bit vector: 64 entries, each entry
is 4 B in size); 2) 512-B page occupied bit vector (4096
entries, each entry is 1 bit in size); 3) 216-B hotness tracker
buffer (hot table: 192 entries, each entry is 1 B in size;
parameters: 8 entries, each entry is 3 B in size); 4) 144-B
metadata prefetcher (16 entries, each entry is 9 B in size);
and 5) 16 kB+32 B data movement buffer (four 4-kB-sized
pages with their corresponding 8-B-sized starting physical
addresses). The total on-chip capacity required by Phoenix
is only about 18 kB+176 B (2-kB metadata buffer, 144-B
metadata prefetcher, and 16 kB+32 B data movement buffer).
Compared to hundreds of kilobytes of on-chip metadata
buffer in previous works [14], [23], [24], the hardware cost of
Phoenix is significantly reduced.

TABLE III
SYSTEM CONFIGURATION

TABLE IV
BENCHMARK CHARACTERISTICS (BM: BENCHMARK, MPKI: LLC

MISSES PER KILO INSTRUCTIONS, AND FP: FOOTPRINT)

IV. EVALUATION

A. Experimental Setup

We use the gem5 simulator [60] and DRAMSim2 [61]
to model Phoenix and other control schemes. We compare
Phoenix against a baseline configuration and nine state-of-the-
art designs.

1) A baseline system without NM: BASE.
2) Two hybrid mode designs: Hybrid2 [23] and

Baryon [24].
3) Three memory mode designs: Chameleon [2],

AGDM [5], and RHPM [6].
4) Four cache mode designs: Banshee [22], Alloy Cache

(AC) [11], Unison Cache (UC) [21], and NOMAD [13].
In order to evaluate the effectiveness of our proposed

Phoenix design comprehensively, we implement all systems in
three different hybrid NM and FM architectures (DRAM-PM,
local–remote memory connected with CXL, and HBM-
DRAM) as shown in Table III. Page faults in our system are
assumed to be serviced by a solid-state disk with a latency of
36 microseconds (100K cycles) [2], [54]. Since state-of-the-art
designs achieve the best performance under different on-chip
metadata sizes ranging from several kilobytes to 512 kB, for a

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 18,2025 at 07:18:08 UTC from IEEE Xplore. Restrictions apply.

HUA et al.: PHOENIX: A DYNAMICALLY RECONFIGURABLE HYBRID MEMORY SYSTEM 1135

Fig. 10. Geometric mean of the IPC speedup for Phoenix with different block and page sizes, normalized to BASE, in the three hybrid memory systems.

(a) (b) (c)

Fig. 11. Geometric mean of the IPC speedup for Phoenix with different ratios of FM pages tracked by PRT, normalized to that for Phoenix with none of
the FM pages tracked by PRT, in the three hybrid memory systems. (a) DRAM-PM hybrid memory system. (b) Local–remote hybrid memory system. (c)
HBM-DRAM hybrid memory system.

fair comparison among all evaluated designs, we allow 512-kB
on-chip SRAM in the memory controller to buffer requested
metadata and the rest unused SRAM to buffer frequently
requested data.

The configurations for Phoenix are shown as follows. Both
cNM and mNM are managed with 8-way associativity. In
each remapping set, the hot table monitors sixteen recently
accessed FM pages for a balance between the metadata
overhead and data migration efficiency. We set T as the
smallest hotness value of NM pages in each remapping set
to dynamically match the data hotness pattern during runtime.
The Rh is defined as high if its value reaches 1 to maximize
the NM utilization rate. The ADQ size is set to 16, which
is effective for metadata prefetching in Phoenix and does
not incur excessive overhead. For metadata prefetching, the
prefetching range Raddr is set to 8 kB, where more than 95%
of requested metadata is prefetched from NM to HMMC in
our experiments. We use the SPEC2017 [40], Mantevo [53],
NAS [37], and Stream [38] benchmarks in Table IV to evaluate
our design. We simulate a minimum of 24 billion instructions
for each benchmark by using the Simpoint [59].

B. Design Space Exploration and Metadata Overhead

Phoenix can be configured with any block and page size,
which affects the system performance and metadata size. We
explore some possible page size (ranging from 2 to 16 kB)
and block size (ranging from 64 to 512 B) configurations
in the three hybrid memory systems, and their performance
results are shown in Fig. 10. We use the average normalized
instruction per cycle (IPC) for all benchmarks in Table IV
during execution as a performance metric for the speedup
comparison. Smaller blocks miss the opportunity to exploit
spatial locality while larger blocks cause over-fetching. Thus,
a block of 128 B is a good compromise between the spatial
locality exploitation and bandwidth consumption. For the same
block size, 4 kB pages demonstrate the best performance
among evaluated page size configurations. Our design achieves
the best performance at 128 B blocks and 4 kB pages, and for
the rest of experiments in this article, we present our results
in this configuration.

Fig. 12. Geometric mean of the metadata buffer hit rate for Phoenix with
different metadata buffer capacities in HMMC.

Fig. 11 illustrates the performance of Phoenix with different
ratios of FM pages tracked by PRT. It is predictable that
Phoenix achieves the highest IPC by tracking all FM pages
(the ratio = 1) and the lowest IPC by tracking none of
the FM pages (the ratio = 0), due to the performance
gap between the fast swap and slow swap. The metadata
overhead is proportional to the number of tracked FM pages.
However, the system’s performance gradually increases with
the enlargement of the ratio and tends to saturate. Only a small
portion of memory pages are potentially subject to remapping
during a period of workload’s running time. In the three hybrid
memory systems, the IPC achieved by tracking (1/16) of
all FM pages is, on average, 97.2% of that by tracking all
FM pages. Therefore, in each remapping set, Phoenix tracks
the caching and migration trajectories of (1/16) of all FM
pages, considering both performance and metadata overhead.
The total metadata storage space in NM (3960 kB: 2496-kB
PRT, 1040-kB page occupied bit vector, and 424-kB hotness
tracker) is reduced by 1–2 orders of magnitude compared to
prior designs.

Fig. 12 demonstrates the geometric mean of the metadata
buffer hit rate over different metadata buffer capacities in
HMMC. When the capacity is larger than 2 kB, the metadata
buffer hit rate is close to 1. Phoenix sets the default metadata
buffer capacity as 2 kB, where the metadata buffer has an
average hit rate of 96.5% without incurring much hardware
cost in HMMC.

Fig. 13 gives the sensitivity results for different variables in
Phoenix running on the DRAM-PM hybrid memory system. In
Fig. 13(a), with the increasing number of monitored FM pages
in each remapping set, Phoenix achieves higher IPC speedup

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 18,2025 at 07:18:08 UTC from IEEE Xplore. Restrictions apply.

1136 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 44, NO. 3, MARCH 2025

(a) (b) (c) (d) (e)

Fig. 13. Sensitivity analysis for different variables in Phoenix running on the DRAM-PM hybrid memory system. (a) IPC speedup for Phoenix with different
numbers of monitored FM pages, normalized to BASE. (b) IPC speedup for Phoenix with different values of Rh defined as high, normalized to BASE. (c)
IPC speedup for Phoenix with different ADQ sizes, normalized to BASE. (d) Metadata buffer hit rate for Phoenix with different values of Raddr, normalized
to BASE. (e) IPC speedup for Phoenix with different values of T , normalized to BASE.

Fig. 14. Performance factors breakdown, normalized to BASE, in the three
hybrid memory systems.

and tends to saturate. More monitored FM pages in the hot
table enable Phoenix to catch hotness changes of more recently
requested pages. The metadata overhead for hotness monitor-
ing is proportional to the number of monitored FM pages,
while the system’s performance tends to saturate. Monitoring
sixteen FM pages in each remapping set reduces the metadata
overhead without degrading performance. Fig. 13(b) illustrates
the performance of Phoenix with different values of Rh defined
as high. As described in Section III-F, if the Rh value in
a remapping set is low, requested FM pages are directly
cached/migrated to NM. If the Rh value in a remapping set
is high, only requested FM pages whose hotness value is
larger than T are cached/migrated to NM. With the increasing
value of the Rh threshold defined as high, more requested FM
pages are brought to NM, contributing to a higher NM uti-
lization rate and more performance benefits. The performance
of Phoenix with different ADQ sizes and Raddr values is
shown in Fig. 13(c) and (d), respectively. Larger ADQ size
and Raddr value improve the metadata buffer hit rate. The
performance tends to saturate when the ADQ size is larger
than 12. Prefetching 8 kB Raddr ranges contributes to a 97.8%
metadata buffer hit rate. We evaluate Phoenix’s performance
with different T values in Fig. 13(e). Phoenix has a bad
performance with a fixed threshold of 0. Not only can the
fixed threshold not dynamically match the data hotness pattern
during runtime, but it also consumes a significant amount of
bandwidth for data movement. Hmin (the minimum hotness
value of NM pages in each remapping set) achieves higher IPC
speedup than Havg (the average hotness value of NM pages in
each remapping set) and Hmax (the maximum hotness value
of NM pages in each remapping set). The reason is that a
higher T value prevents a large number of requested FM pages
from being brought into NM, contributing to fewer memory
requests served by NM.

C. Performance Breakdown

Fig. 14 illustrates the geometric mean of the IPC speedup
for all benchmarks in Table IV to show the effect of our
proposed optimizations. The performance speedup of Phoenix

can be attributed to the cNM and mNM combination,
the dynamically adjustable cNM and mNM capacities, the
multiplexed cNM and mNM space, the metadata buffer in
HMMC, the page allocation mechanism, and the metadata
prefetcher. Each of these optimizations contributes to 22.7%,
21.4%, 13.9%, 18.1%, 8.8%, and 15.1% of Phoenix’s overall
performance gain, respectively. Each entry on the x-axis rep-
resents Phoenix removing one of our proposed optimizations.
From left to right: C-Only and M-Only represent all the
NM used as cNM and mNM, respectively. The more benefits
achieved by M-Only than C-Only mainly stem from the better
memory bandwidth efficiency for NM and FM and more OS
available memory space. We also evaluate the performance of
fixing the cNM capacity at 50% of total NM capacity (50%-C),
which outperforms the single-mode designs. Dynamically
adjustable cNM and mNM capacity design (Dyna-C-M) better
exploits temporal and spatial locality benefits for different
memory access patterns and outperforms fixed cNM and
mNM capacity designs. A hybrid mode design without the
multiplexed cNM and mNM space (No-Multi) brings more
data movement overhead for mode switch, wasting both
NM and FM bandwidth. Placing all the metadata in NM
without the metadata buffer in HMMC (Meta-N) degrades
the performance mainly due to the performance gap between
SRAM and NM as well as more NM traffic. Alloc-F and Alloc-
N represent allocating all pages to FM and NM, respectively.
Compared to our hotness-based page remapping allocation,
Alloc-F consumes more bandwidth for hot data migration from
FM to NM. Alloc-N reduces the migration cost for workloads
with low memory footprint since all the data can be placed in
NM while incurs significant bandwidth waste for high memory
footprint workloads due to a large amount of data evicted
from NM. Removing the metadata prefetcher from Phoenix
(No-Pre) incurs a lower metadata buffer hit rate and higher
metadata miss latency on the critical path.

D. Performance Comparisons

Figs. 15–17 illustrate the performance of Phoenix and state-
of-the-art designs for high, medium, low and all MPKI
benchmarks in the three hybrid memory systems, respectively:
Phoenix outperforms the best previous designs by 27.1%,
20.5%, 8.4%, and 18.2% on average in each benchmark suit.
Phoenix has the best performance on all the 22 benchmarks in
Table IV. Compared to the two hybrid mode designs Hybrid2
and Baryon, Phoenix makes better use of NM for locality
exploration due to the adjustable capacities for cNM and

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 18,2025 at 07:18:08 UTC from IEEE Xplore. Restrictions apply.

HUA et al.: PHOENIX: A DYNAMICALLY RECONFIGURABLE HYBRID MEMORY SYSTEM 1137

Fig. 15. Performance of Phoenix and state-of-the-art designs, normalized to BASE, in the DRAM-PM hybrid memory system. The benchmarks are sorted
by MPKI and the geometric mean of an MPKI class is presented at the right of the class.

Fig. 16. Performance of Phoenix and state-of-the-art designs, normalized to
BASE, in the local–remote hybrid memory system.

Fig. 17. Performance of Phoenix and state-of-the-art designs, normalized to
BASE, in the HBM-DRAM hybrid memory system.

mNM. Besides, since the metadata storage space is greatly
minimized and the cNM and mNM space is multiplexed,
Phoenix provides more NM space for workloads and consumes
less memory bandwidth for mode switch between cNM and
mNM. Furthermore, the dynamic mode switch design in
Phoenix provides more available memory for the OS and
reduces page faults for workloads with high memory foot-
print. Chameleon, RHPM, and AGDM are designed based
on POM [3] with the added option to economize on migra-
tion bandwidth. They restrict only one NM sector in each
remapping set, which leads to uneven NM utilization rates
in different remapping sets and frequent sector migration and
eviction. Furthermore, RHPM and AGDM adopt the slow
swap mechanism for data migration between FM and NM,
consuming more memory bandwidth to swap data between
hybrid memories and degrading the system performance.
Cache designs fail to utilize the aggregate memory bandwidth
of both NM and FM. The high eviction frequency for hot
data in NM and more page faults caused by the OS invisible
NM space architecture give rise to a significant amount of
migration bandwidth and page fault latency, degrading the
system performance. Moreover, state-of-the-art designs do
not consider both the spatial and temporal locality of the
running workloads, incurring unnecessary memory bandwidth
consumption and data fetching latency due to the over-fetching
issue and the inability to premigrate upcoming requested data
from FM to NM. Significant metadata storage overhead in
state-of-the-art designs reduces the available NM space for
running workloads, degrading the system performance as well.

E. Over-Fetching Analysis

Over-fetching is a common issue that plagues modern
hybrid memory management designs and degrades system
performance. By collecting the percentage of data brought in
NM but unused, we analyze the over-fetching for Phoenix and
two state-of-the-art hybrid mode designs: 10.4% in Phoenix
(128 B blocks and 4 kB pages), 16.8% in Baryon (256 B sub-
blocks, 2 kB blocks, and 16 kB super-blocks), and 18.5% in
Hybrid2 (256 B blocks and 2 kB pages). The reasons for the
over-fetching reduced by Phoenix are as follows.

1) The over-fetching is mainly caused by workloads with
weak spatial locality. The adjustable design in Phoenix
can provide more cNM capacity (up to 512 MB) than
Hybrid2 (64 MB) and Baryon (64 MB) for workloads
with weak spatial locality, which greatly reduces the
eviction frequency in cNM and enables blocks in cNM
to serve more memory requests before eviction.

2) Our data movement mechanism only permits data in a
page that reaches a certain hotness level (i.e., T) to be
brought in NM for high memory footprint condition,
which prevents pages with low hotness into NM and
reduces the eviction frequency of pages in NM. Hybrid2
and Baryon bring all requested blocks into cNM, which
causes significant over-fetching for workloads with weak
spatial locality.

3) The buffering mechanism for mNM page eviction
extends the pages’ residency in NM, enabling data
brought in NM to serve more memory requests before
eviction.

4) The granularity for data caching and eviction in Phoenix
is smaller than that in Hybrid2 and Baryon, mitigating
the over-fetching issue.

F. Memory Traffic Analysis

Fig. 18(a) and (b) illustrates the normalized NM and FM
traffic for each benchmark group, respectively. Phoenix econo-
mizes memory bandwidth for both NM (12.7% less traffic than
the best, i.e., AGDM) and FM (9.3% less traffic than the best,
i.e., Banshee), which is one of the reasons why Phoenix has
the best performance. The two hybrid mode designs, Hybrid2
and Baryon, both incur extra unnecessary NM traffic for data
migration from one space in NM to another space in NM,
which can be mitigated by the multiplexed NM space design
in Phoenix. The over-fetching issue results in excessive NM
and FM traffic as well. In general, cache mode designs incur
higher NM traffic and lower FM traffic than memory mode
designs. This is because cache mode designs need to fetch
all requested data from FM to NM while memory mode

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 18,2025 at 07:18:08 UTC from IEEE Xplore. Restrictions apply.

1138 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 44, NO. 3, MARCH 2025

(a) (b)

Fig. 18. (a) NM traffic and (b) FM traffic of Phoenix and state-of-the-art designs, normalized to BASE.

designs only migrate data for future reuse. RHPM and AGDM
employ the slow swap mechanism for data migration in hybrid
memory systems, which generates more data migration traffic.
The memory traffic reduction in Phoenix is mainly attributed
to lowering the eviction frequency for pages in cNM and
mNM, preventing data with a low access frequency into
NM, alleviating the over-fetching risk, and reducing the data
movement overhead for mode switch between cNM and mNM.
Apart from the system performance gains achieved by the
memory traffic reduction, the write durability issue [47], [48]
for PM products in DRAM-PM hybrid memory systems is
alleviated as well.

V. RELATED WORK

In general, prior works can be divided into three categories:
utilizing NM in cache mode (cNM), memory mode (mNM),
and hybrid mode (both cNM and mNM).

NM in Cache Mode: Prior cNM designs aim to mitigate
the metadata overhead for data caching and enhance the
hit rate of cNM. AC [11] utilizes a direct mapped design
with 64-byte cache lines and eliminates the tag serialization
delay by streaming tag and data together in a single burst.
A simple and highly effective memory access predictor is
employed to service cache misses faster without waiting for
a cache miss detection. UC [21] is a page-based four-way
set-associative cache design with an LRU replacement policy
that uses a footprint predictor to improve the hit rate of cNM.
Moreover, it uses a way predictor to avoid the serialization
latency of tags and data accesses. Banshee [22] leverages OS
page tables and TLBs to locate data in cNM and proposes
a bandwidth-aware replacement policy to balance bandwidth
utilization. Information of recently inserted or replaced pages
in cNM is cached in an added SRAM structure called Tag
Buffer. NOMAD [13] utilizes OS page tables and TLBs to
manage tags and added hardware to perform data caching.
By decoupling the tag and data management, on a DC miss,
the OS updates a tag and immediately resumes an application
thread without waiting for the cache fill to complete. Instead,
the added hardware handles the cache fill without blocking the
application thread.

NM in Memory Mode: State-of-the-art mNM designs intend
to mitigate the metadata overhead for data remapping and
make predictions for potentially reused data. Chameleon [2]
modifies the instruction set architecture (ISA) to enable the
operating system to inform the added hardware of page alloca-
tions and frees. The same as POM [3], Chameleon adopts the
segment restricted remapping mechanism for data remapping,
resulting in uneven NM utilization rates in different remapping
sets and frequent segment migration. Chameleon utilizes fast

swap for data migration. RHPM [6] is a hardware-based page
remapping design adopting the segment restricted remapping
mechanism. Page migration in a remapping set is decided
by the relative page hotness. Metadata is placed in NM and
cached in added hardware. In the case of metadata cache
misses, RHPM makes predictions for the location of requested
data. AGDM [5] is designed based on RHPM with the added
option to migrate data in two granularities. Memory footprint
predictions are made for potentially recurring discrete memory
access patterns during runtime. Both RHPM and AGDM
employ slow swap for data migration.

NM in Hybrid Mode: The aim of hybrid mode designs is to
combine the advantages of both cNM and mNM. Hybrid2 [23]
is a hardware-based design using a fixed small fraction of NM
as cNM and the remaining NM as mNM. Metadata for hybrid
memory management is stored in NM and cached in added
hardware. The cNM performs as a staging area to select the
data most suitable for migration. Data in cNM is evicted to
mNM or FM based on the migration traffic overhead. Hybrid2
performs fast swap for data migration between FM and mNM.
Baryon [24] is a hardware-based design leveraging memory
compression and data sub-blocking techniques to improve the
utilization of NM capacity and FM bandwidth. A small NM
area is reserved to efficiently manage and stabilize the irregular
and frequently varying data layouts. Data migration between
FM and mNM is performed by using slow swap. In both
Hybrid2 and Baryon, the ratio of cNM to mNM is fixed and
the space of cNM and mNM is separate.

VI. CONCLUSION

This article presents Phoenix, a novel hybrid memory
system that combines caching and migration. The ratio of
cNM to mNM is adjustable to exploit both temporal and
spatial locality benefits. Phoenix lowers the over-fetching
risk and reduces the data movement cost for mode switch
between cNM and mNM. A lightweight metadata prefetcher
is employed to improve the hit rate of the metadata cache
and a fast&slow swap mechanism is adopted to mitigate the
metadata overhead while maintaining high swap efficiency. In
our evaluations, Phoenix outperforms state-of-the-art designs
by an average of 18.2% and consumes orders of magnitude
less metadata storage space.

REFERENCES

[1] L. Song, Y. Chi, L. Guo, and J. Cong, “Serpens: A high bandwidth
memory based accelerator for general-purpose sparse matrix-vector
multiplication,” in Proc. 59th ACM/IEEE Design Autom. Conf., 2022,
pp. 211–216.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 18,2025 at 07:18:08 UTC from IEEE Xplore. Restrictions apply.

HUA et al.: PHOENIX: A DYNAMICALLY RECONFIGURABLE HYBRID MEMORY SYSTEM 1139

[2] J. B. Kotra, H. Zhang, A. R. Alameldeen, C. Wilkerson, and
M. T. Kandemir, “CHAMELEON: A dynamically reconfigurable het-
erogeneous memory system,” in Proc. 51st Annu. IEEE/ACM Int. Symp.
Microarchit. (MICRO), 2018, pp. 533–545.

[3] J. Sim, A. R. Alameldeen, Z. Chishti, C. Wilkerson, and H. Kim,
“Transparent hardware management of stacked DRAM as part of
memory,” in Proc. 47th Annu. IEEE/ACM Int. Symp. Microarchit., 2014,
pp. 13–24.

[4] J. H. Ryoo, M. R. Meswani, A. Prodromou, and L. K. John, “SILC-FM:
Subblocked interleaved cache-like flat memory organization,” in Proc.
IEEE Int. Symp. High Perform. Comput. Archit. (HPCA), 2017,
pp. 349–360.

[5] Z. Peng, D. Feng, J. Chen, J. Hu, and C. Huang, “AGDM: An adaptive
granularity data migration strategy for hybrid memory systems,” in Proc.
Design, Autom. Test Eur. Conf. Exhib. (DATE), 2023, pp. 1–6.

[6] Z. Peng, D. Feng, J. Chen, J. Hu, and C. Huang, “RHPM: Using relative
hotness to guide page migration for hybrid memory systems,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 42, no. 8,
pp. 2514–2526, Aug. 2023.

[7] A. Prodromou, M. Meswani, N. Jayasena, G. Loh, and D. M. Tullsen,
“MemPod: A clustered architecture for efficient and scalable migration
in flat address space multi-level memories,” in Proc. IEEE Int. Symp.
High Perform. Comput. Archit. (HPCA), 2017, pp. 433–444.

[8] A. Kokolis, D. Skarlatos, and J. Torrellas, “PageSeer: Using page walks
to trigger page swaps in hybrid memory systems,” in Proc. IEEE Int.
Symp. High Perform. Comput. Archit. (HPCA), 2019, pp. 596–608.

[9] E. Vasilakis, V. Papaefstathiou, P. Trancoso, and I. Sourdis, “LLC-guided
data migration in hybrid memory systems,” in Proc. IEEE Int. Parallel
Distrib. Process. Symp. (IPDPS), 2019, pp. 932–942.

[10] P. Behnam and M. N. Bojnordi, “RedCache: Reduced DRAM
caching,” in Proc. 57th ACM/IEEE Design Autom. Conf. (DAC), 2020,
pp. 1–6.

[11] M. K. Qureshi and G. H. Loh, “Fundamental latency tradeoff in
architecting DRAM caches: Outperforming impractical SRAM-tags with
a simple and practical design,” in Proc. 45th Annu. IEEE/ACM Int. Symp.
Microarchit., 2012, pp. 235–246.

[12] M. N. Bojnordi and F. Nasrullah, “ReTagger: An efficient controller for
DRAM cache architectures,” in Proc. 56th Annu. Design Autom. Conf.,
2019, pp. 1–6.

[13] Y. Kim, H. Kim, and W. J. Song, “NOMAD: Enabling non-blocking
OS-managed DRAM cache via tag-data decoupling,” in Proc. IEEE Int.
Symp. High-Perform. Comput. Archit., 2023, pp. 193–205.

[14] F. Zhou, S. Wu, J. Yue, H. Jin, and J. Shen, “Object fingerprint cache for
heterogeneous memory system,” IEEE Trans. Comput., vol. 72, no. 9,
pp. 2496–2507, Sep. 2023.

[15] Y. Tan et al., “GATLB: A granularity-aware TLB to support multi-
granularity pages in hybrid memory system,” in Proc. Design, Autom.
Test Eur. Conf. Exhib. (DATE), 2022, pp. 903–908.

[16] T. Lee, S. K. Monga, C. Min, and Y. I. Eom “MEMTIS: Efficient
memory tiering with dynamic page classification and page size deter-
mination,” in Proc. 29th Symp. Oper. Syst. Princ., 2023, pp. 17–34.

[17] M. Babaie, A. Akram, and J. Lowe-Power, “Enabling design space
exploration of DRAM caches for emerging memory systems,” in Proc.
IEEE Int. Symp. Perform. Anal. Syst. Softw. (ISPASS), 2023,
pp. 340–342.

[18] J. Hong, S. Cho, G. Park, W. Yang, Y.-H. Gong, and G. Kim,
“Bandwidth-effective DRAM cache for GPUs with storage-class
memory,” in Proc. IEEE Int. Symp. High-Perform. Comput. Archit.
(HPCA), 2024, pp. 139–155.

[19] D. Jevdjic, S. Volos, and B. Falsafi, “Die-stacked DRAM caches
for servers: Hit ratio, latency, or bandwidth? Have it all with foot-
print cache,” ACM SIGARCH Comput. Archit. News, vol. 41, no. 3,
pp. 404–415, 2013.

[20] Y. Lee et al., “A fully associative, tagless DRAM cache,” ACM
SIGARCH Comput. Archit. News, vol. 43, no. 3S, pp. 211–222, 2015.

[21] D. Jevdjic, G. H. Loh, C. Kaynak, and B. Falsafi, “Unison cache: A
scalable and effective die-stacked DRAM cache,” in Proc. 47th Annu.
IEEE/ACM Int. Symp. Microarchit., 2014, pp. 25–37.

[22] X. Yu, C. J. Hughes, N. Satish, O. Mutlu, and S. Devadas, “Banshee:
Bandwidth-efficient DRAM caching via software/hardware coopera-
tion,” in Proc. 50th Annu. IEEE/ACM Int. Symp. Microarchit., 2017,
pp. 1–14.

[23] E. Vasilakis, V. Papaefstathiou, P. Trancoso, and I. Sourdis, “Hybrid2:
Combining caching and migration in hybrid memory systems,” in Proc.
IEEE Int. Symp. High Perform. Comput. Archit. (HPCA), 2020,
pp. 649–662.

[24] Y. Li and M. Gao, “Baryon: Efficient hybrid memory management with
compression and sub-blocking,” in Proc. IEEE Int. Symp. High-Perform.
Comput. Archit. (HPCA), 2023, pp. 137–151.

[25] Y. Hua, S. Zheng, J. Yin, W. Chen, and L. Huang, “Bumblebee: A
MemCache design for die-stacked and off-chip heterogeneous memory
systems,” in Proc. 60th ACM/IEEE Design Autom. Conf. (DAC), 2023,
pp. 1–6.

[26] Y. Sun et al. “Demystifying CXL memory with genuine CXL-ready
systems and devices,” in Proc. 56th Annu. IEEE/ACM Int. Symp.
Microarchit., 2023, pp. 105–121.

[27] W. Liu, X. He, and Q. Liu, “Exploring memory access similarity
to improve irregular application performance for distributed hybrid
memory systems,” IEEE Trans. Parallel Distrib. Syst., vol. 34, no. 3,
pp. 797–809, Mar. 2023.

[28] A. Sodani et al., “Knights landing: Second-generation Intel Xeon Phi
product,” IEEE Micro, vol. 36, no. 2, pp. 34–46, Mar./Apr. 2016.

[29] C. Giannoula et al. “DaeMon: Architectural support for efficient data
movement in fully disaggregated systems,” Proc. ACM Meas. Anal.
Comput. Syst., vol. 7, no. 1, pp. 1–36, 2023.

[30] B. Cook, T. Kurth, B. Austin, S. Williams, and J. Deslippe, “Performance
variability on Xeon Phi,” in Proc. Int. Conf. High Perform. Comput.,
2017, pp. 419–429.

[31] G. Kaur, R. Arora, and S. S. Panchal, “Implementation and comparison
of direct mapped and 4-way set associative mapped cache controller in
VHDL,” in Proc. 8th Int. Conf. Signal Process. Integr. Netw. (SPIN),
2021, pp. 1018–1023.

[32] N. Jain, S. Mittal, and P. Ahlawat, “Reducing conflict misses using
fraction associative mapping,” in Proc. 2nd IEEE Int. Conf. Parallel,
Distrib. Grid Comput., Solan, India, 2012, pp. 349–354.

[33] L. Kosmidis, J. Abella, E. Quiñones, and F. J. Cazorla, “A cache design
for probabilistically analysable real-time systems,” in Proc. Design,
Autom. Test Eur. Conf. Exhib. (DATE), 2013, pp. 513–518.

[34] High Bandwidth Memory (HBM) DRAM, JEDEC Standard
JESD235D. Accessed: Dec. 26, 2023. [Online]. Available:
https://www.jedec.org/standards-documents/docs/jesd235a.

[35] (Micron Technol., Inc., Boise, ID, USA). DDR4 Datasheet. Micron.
Accessed: Dec. 26, 2023. [Online]. Available: https://www.micron.com/
products/dram/ddr4-sdram/part-catalog/mt40a1g8sa-062e

[36] J. T. Pawlowski, “Hybrid memory cube (HMC),” in Proc. IEEE Hot
Chips 23 Symp. (HCS), 2011, pp. 1–24.

[37] “NAS benchmark.” NAS. Accessed: Nov. 2, 2023. [Online]. Available:
https://goo.gl/jQvMKbl

[38] “Stream benchmark.” STREAM. Accessed: Nov. 2, 2023. [Online].
Available: https://www.cs.virginia.edu/stream/

[39] S. Singh and M. Awasthi, “Memory centric characterization and analysis
of SPEC CPU2017 suite,” in Proc. ACM/SPEC Int. Conf. Perform. Eng.,
2019, pp. 285–292.

[40] R. Panda, S. Song, J. Dean, and L. K. John, “Wait of a decade:
Did SPEC CPU 2017 broaden the performance horizon?” in Proc.
IEEE Int. Symp. High Perform. Comput. Archit. (HPCA), 2018,
pp. 271–282.

[41] S. Song et al. “Experiments with SPEC CPU 2017: Similarity, balance,
phase behavior and SimPoints,” Dept. Electr. Comput. Eng., Univ. Texas
Austin, Austin, TX, USA, Rep. TR-180515-01, 2018.

[42] S. Tsukada, H. Takayashiki, M. Sato, K. Komatsu, and H. Kobayashi,
“A metadata prefetching mechanism for hybrid memory architec-
tures,” IEICE Trans. Electron., vol. 105, no. 6, pp. 232–243, 2022.

[43] (Intel, Santa Clara, CA USA). Intel Optane DC Persistent
Memory. (2020). [Online]. Available: Dec. 25, 2023. [Online].
Available: https://www.intel.com/content/www/us/en/architecture-and-
technology/optane-dc-persistent-memory.html

[44] G. W. Burr et al., “Phase change memory technology,” J. Vac. Sci.
Technol. B, vol. 28, no. 2, pp. 223–262, 2010.

[45] J. Condit et al., “Better I/O through byte-addressable, persistent
memory,” in Proc. ACM SIGOPS 22nd Symp. Oper. Syst. Princ., 2009,
pp. 133–146.

[46] H. Li et al., “Pond: CXL-based memory pooling systems for cloud
platforms,” in Proc. 28th ACM Int. Conf. Archit. Support Program. Lang.
Oper. Syst., vol. 2, 2023, pp. 574–587.

[47] Y. Hua, K. Huang, S. Zheng, and L. Huang, “PMSort: An adaptive sort-
ing engine for persistent memory,” J. Syst. Archit., vol. 120, Nov. 2021,
Art. no. 102279.

[48] Y. Chen, J. Shu, J. Ou, and Y. Lu, “HiNFS: A persistent memory file
system with both buffering and direct-access,” ACM Trans. Storage,
vol. 14, no. 1, pp. 1–30, 2018.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 18,2025 at 07:18:08 UTC from IEEE Xplore. Restrictions apply.

1140 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 44, NO. 3, MARCH 2025

[49] Y. Hua, K. Huang, S. Zheng, and L. Huang, “Redesigning the sorting
engine for persistent memory,” in Proc. 26th Int. Conf. Database Syst.
Adv. Appl., 2021, pp. 393–412.

[50] E. H. M. Cruz, M. Diener, M. A. Z. Alves, L. L. Pilla, and
P. O. A. Navaux, “Optimizing memory locality using a locality-aware
page table,” in Proc. IEEE 26th Int. Symp. Comput. Archit. High
Perform. Comput., 2014, pp. 198–205.

[51] Y. Feng and E. D. Berger, “A locality-improving dynamic memory
allocator,” in Proc. Workshop Memory Syst. Perform., 2005, pp. 68–77.

[52] B. Goglin, “Memory footprint of locality information on many-core plat-
forms,” in Proc. IEEE Int. Parallel Distrib. Process. Symp. Workshops
(IPDPSW), 2018, pp. 1283–1292.

[53] M. A. Heroux et al., “Improving performance via mini-applications,”
Sandia Nat. Lab., Albuquerque, NM, USA, Rep. SAND2009-5574X,
2009.

[54] C. C. Chou, A. Jaleel, and M. K. Qureshi, “CAMEO: A two-level
memory organization with capacity of main memory and flexibility of
hardware-managed cache,” in Proc. IEEE/ACM Int. Symp. Microarchit.,
2014, pp. 1–12.

[55] A. Akram, “The feasibility of utilizing low-power DRAM in disag-
gregated memory systems,” in Proc. Int. Symp. Memory Syst., 2024,
pp. 1–3.

[56] S. Van Doren, “HOTI 2019: Compute express link,” in Proc. IEEE Symp.
High-Perform. Interconnects (HOTI), 2019, p. 18.

[57] J. A. Mandelman et al., “Challenges and future directions for the scaling
of dynamic random-access memory (DRAM),” IBM J. Res. Develop.,
vol. 46, no. 2.3, pp. 187–212, Mar. 2002.

[58] Z. Ruan, M. Schwarzkopf, M. K. Aguilera, and A. Belay “AIFM: High-
Performance, Application-Integrated far memory,” in Proc. 14th USENIX
Symp. Oper. Syst. Design Implement. (OSDI), 2020, pp. 315–332.

[59] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically
characterizing large scale program behavior,” ACM SIGPLAN Notices,
vol. 37, no. 10, pp. 45–57, 2002.

[60] N. Binkert et al., “The gem5 simulator,” ACM SIGARCH Comput. Archit.
News, vol. 39, no. 2, pp. 1–7, 2011.

[61] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “DRAMSim2: A cycle
accurate memory system simulator,” IEEE Comput. Archit. Lett., vol. 10,
no. 1, pp. 16–19, Jan.–Jun. 2011.

Yifan Hua (Student Member, IEEE) is currently
pursuing the Ph.D. degree with Shanghai Jiao Tong
University, Shanghai, China.

His research interests include nonvolatile memory
systems, processing-in-memory systems, and hybrid
memory management.

Shengan Zheng received the B.S. and Ph.D. degrees
from Shanghai Jiao Tong University, Shanghai,
China, in 2014 and 2019, respectively.

He is currently an Assistant Professor with
Shanghai Jiao Tong University. His research interests
include memory systems, storage systems, and
distributed systems.

Weihan Kong is currently pursuing the Ph.D. degree
with Shanghai Jiao Tong University, Shanghai,
China.

His research interests include hybrid memory
system and near data processing.

Cong Zhou is currently pursuing the Ph.D. degree
with Shanghai Jiao Tong University, Shanghai,
China.

His research interests include near-memory
computing and distributed memory systems.

Linpeng Huang (Senior Member, IEEE) received
the M.S. and Ph.D. degrees in computer science
from Shanghai Jiao Tong University, Shanghai,
China, in 1989 and 1992, respectively.

He is a Professor of Computer Science with the
Department of Computer Science and Engineering,
Shanghai Jiao Tong University. His research interests
include distributed systems and service-oriented
computing.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 18,2025 at 07:18:08 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

